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FOREWORD

A technique is described for preserving in cost estimates
more of the information available to the engineers and cost
analysts participating in the process of estimating. The added
information, principally in the form of a frequency distribution
for system costs, should prove useful to the persons faced
with the problem of using the cost estimate in the decision-
making process.

An actual test of the technique, made with a major corn- -

ponent of the Main Battle Tank 70, will be documented in a sub-
sequent publication.

Arnold Proschar,
Head, Economics and Costing Department
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ABSTRACT

An important aspect of cost research 119 the measurement of the un-
certainty inherent in the projection of system cost. Approaches to this
problem have in the pastfocused onthe decisionmaker's intuition oron sen-
sitLvity analysis. Only recently have approaches utilizing such tools as
statistical decision theory and probability theory been formulated.

This study focuses on the Monte Carlo simulation approach to uncer-
tainty in cost analysis. This approach requires (a) expression of input
estimates as probability distributions reflecting uncertainty and (b) cost
equations pertinent to a particular model.

The Monte Carlo simulation approach then generates (a) the fre-
quency distribution for system cost and (b) statistical measures that illus-
trate the nature and magnitude of system cost uncertainty.

Two models are developed, the Beta model and the Weibull model,
each of which reflects a particular distribution form for the inputs. The
relative costs and advantages of each model are compared.

A user's guide to the program and complete program listings are
presented in App A.
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INTRODUCTION

The purpose of this paper is to describe a technique for quantifying un-
certainty in cost analysis. Approaches to the measurement of the uncertainty
present in cost models have in the past generally centered on the intuition of
the decision maker or, at best, on sensitivity analysis. Only recently have ap-
proaches based on statistical decision theory and probability theory been at-
tempted.

The technique of uncertainty analysis is defined for purposes of this paper
as the use of probability distributions as inputs to aggregate models. This
analysis can be used in several ways. For example, it can be valuable where
there is a major lack of information concerning the value of input parameters.
This can be true of systems not yet in existence or of estimates of historical
parameters for which data are fragmentary. It can also be of value in esti-
mating the cost of an existing system for which actual data are available.
Samples of these data can be used to construct distributions for input variables.

The model developed is called the "Monte Carlo Uncertainty Analysis
Model." It is to be used with any cost model. The model allows the user to
specify probability distributions for the cost model input variables rather than
the usual single-point estimates. These are then input to the cost model in the
uncertainty analysis model, and the outputs are probability distributions and
confidence intervals rather than single-point estimates of costs. There are
two variations of the model, differing as to types of probability distributions
that can be used to characterize inputs. One assumes a Beta distribution and
the other a Weibull. The availability of two types of distribution permits the
user more flexibility in specification. The rationale for use of one or the other
approach rests in which type of distribution the analyst feels most closely ap-
proximates the distribution of the input variables of the particular problem and
which set of input specifications he can most easily and accurately provide.

The first chapter of the paper discusses the value of uncertainty analysis
models in general and describes the basic methodology of techniques developed.
The second chapter discusses actual use of the techniques in several simpli-
fied examples.

The appendix provides the user with the information necessary to effec-
tively implement the programs. The precise format of user-provided inputs
is described. Error messages are incorporated into the program to ensure
conformity with input requirements. A description of program logic is fol-
lowed by a complete listing of the Weibull and Beta programs.
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Chapter 1

COST-UNCERTAINTY ANALYSIS: AN OVERVIEW

COST UNCERTAINTY IN DECISION MAKING

The process of decision making and thus the fundamental task of the de-
cision maker is to choose among alternative courses of action. Often such
choice will involve a cost-benefit analysis of either a formal or an informal
nature. Within the context of a formal analysis, what has been given the deci-
sion maker as costs may now be examined.

The precise calculation of costs is not a difficult task. The availability
of computers and cost models can reduce this to routine. The calculation it-
self is precise and can be done rapidly in minute detail.

The inputs to these precise calculations are, however, not precise; in
fact they are often quite the opposite. The errors present in each input are
passed on to various aggregations until a total cost is arrived at that somehow
reflects each individual error. Thus, cost data inputs are combined in a com-
puter model with a multiplicity of equations and hundreds of other inputs to
form a single estimate of total costs. This single estimate is presented to the
decision maker with the implication that, although it may not be perfect, it is
certainly the best available estimate and without any statement as to likelihood
of occurrence or range of other possible values.

But in the generation of this aggregate number, hundreds of imprecise
numbers may have been used. This fact is not emphasized to the decision
maker nor does he have a basis on which to judge the precision of the numbers.
Cost models as currently conceived and used, then, uniformly withhold from
the decision maker some information that might be vital to his decision. He
has been denied some available information on the accuracy of the estimates.

As an example, suppose that one of the elements to be costed is a missile
airframe. The missile is not yet designed or built, so no production-cost data
are available. A cost-estimating relation (CER) could be used, for example,
to estimate that the airframe cost for a new missile would be about $32,000.
The design group, however, warns that some added sophistication might make
the CER predict on the low side, but the improvements in some manufacturing
techniques promise lower costs. Some quick calculations show estimates as
low as $26,000 and as high as $45,000. Each of these calculations is based on
a set of assumptions concerning labor and overhead rates, material costs in
the future, and design details not yet firm and subject to some uncertainty.
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For each of a multitude of other important inputs, similar assumptions
are made, and a single aggregate cost is obtained as the output of the cost
model. The hypothetical decision maker is then forced to make his final de-
cision on a single value derived from several imprecise input values. If he
can be provided with some additional knowledge concerning the impact of the
uncertain variable, a more rational decision can be made.

The dangers of the single-cost estimate have been recognized for years,
and several strategies have been developed for augmenting the analysis or 4

circumventing the difficulty. One is isolation of the differences between alter-
natives. Cost elements common to alternatives are estimated in a similar or
identical manner so that only the uncertainties of the unique feature of alter-
natives affect relative cost. Another is the use of sensitivity analysis. In
sensitivity analysis the impact of errors in estimates and assumptions is com-
puted, and error sources important to the choice of alternatives are identified.
Such an analysis can produce proof in insensitivity, or it can provide evidence
that, within a relevant range of values, choice is or is not affected by estima-
tion error.

When judgments about the relevant range of all variables in a model are
considered, sensitivity analysis produces an array of numbers that includes
the analysts' beliefs concerning the limits of the variables but excludes any
knowledge of their relative probability. No probability statements are fur-
nished, and the decision maker could be led to believe that all numbers in the
array are equally likely.

The choice of a relevant range of values for sensitivity analysis is both
difficult and critical to its usefulness. It also reveals a dilemma inherent in
the application of sensitivity analysis. If the analyst has evidence that the
value of one of the inputs is constrained within some upper and lower limits,
then this same evidence may provide information on the relative likelihood of
particular values. In some cases an intuitive belief about the range may pro-
vide him with equally valid suppositions concerning probabilities of the values
within the range.

In the previous example of the missile cost, if the reasoning that fixed
the relevant range of costs at $26,000 to $45,000 could yield Information on
the probability of occurrence, the missing information could be supplied in a
form useful to the decision. A possible statement might be that there is a 99
percent probability that the cost is less than $42,000.

When all uncertain elements of a given cost model are combined, sensi-
"tivity analysis may, for example, produce a maximum cost of $810 million
even though there is only one chance in a hundred that costs will exceed $700
million. In the sensitivity analyses, if the $800 million number exceeded
slightly the cost of another alternative under similar sensitivity assumptions,
the decision maker may have been furnished an unlikely cost set for considera-
tion along with all other sensitivity sets, and this set may uniquely favor a
different alternative. Knowing just a few simple probability statements, then,
can make unnecessary the time-consuming consideration of cost estimates
whose likelihood is very remote.

In short, although sensitivity analysis is a powerful tool for portraying
the results of estimating error, it may lead to considering highly unlikely
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situations. The same reasoning that leads to a determination of relevant
range for sensitivity analysis has the potential of providing key information
in decision making.

Value of Probability Information

The use of probability distributions as inputs to aggregate models has
recently captured the attention of the cost analysts. The two most widely nsed
techniques for handling subjective probability information are the derivation
of moments 1 and the Monte Carlo simulation. This paper focuses on the Monte
Carlo simulation approach and relies heavily on the works of David B. Hertz,2

Paul F. Dienemann,3 and W. D. Lamb.4

A discussion of the Monte Carlo rm lology is preceded by several ex-
amples designed to illustrate the potential value of probability distribution in-
formation to the decision maker. In each illustration the frequency distribu-
tions for two alternatives are shown. The horizontal axis in each case repre-
sents th:e cost of the alternative and is increasing to the right. The vertical
axis represents the likelihood of occurrence at each cost level. Each of these
Is a hypothetical case in which equal effectiveness or other benefits are as-
sumed. The decision maker's problem is that of choosing the least-cost
alternative. If only single-point cost estimates were provided the decision
maker would of course feel constrained to select the lower cost in each case.
However, Fig. 1 demonstrates how information provided by probability estima-
tion could modify his outlook.

The peak of each curve is at the most likely, or modal, value and that is,
in these hypothetical cases, the only cost total that would be furnished a deci-
sion maker in the absence of uncertainty analysis. In thq example in Fig. 1
B is expected to be less expensive but it has a much larger variance, so that
extremely high costs are more likely than with A. Faced with this dilemma,
the decision maker may decide to avoid extreme costs by choosing A or to
gamble on the expected lower costs of B. The decision cannot be prescribed
for him, but probability distributions can give him awareness of a pitfall in
selecting the "less expensive" alternative.

Figure 2 illustrates a clear-cut case. The largest possible cost of one I
alternative is less than the smallest possible cost of the other. Decision A

makers furnished with this information are not likely to choose differently
than if only point estimates were given.

In Fig. 3 a single-point estimate would furnish no basis for choice. With
most likely values essentially the same the decision maker must look else-
where for ( ifferences. If the probability distributions are furnished, however,
it is apparent that the costs cannot be regarded as equal. If they appear as
shown here it is presumed that A would be chosen, since it can be better ac-
commodated in the budgeting and financial management system. It is possible
that much-lower-than-mean costs may have some value too, and as a result
it becomes impossible to speculate on choice outside specific cases. The Im-
portant thing is that information helpful in the decision process has been fur-
nished that would not otherwise be available.

The costs associated with two alternatives may or may not be signifi-
cantly different. Figure 4 illustrates two cost totals, each with the same

6



A

Fig. 1-Alternative Comparison, Case 1

Most likely value A > most likely value B
variance A < variance B

A B

Fig. 2-Alternative Comparison, Case 2

Most likely value A < most likely value B
No overlap of distributions

Fig. 3-Alternative Comparison, Case 3

Most likely value A = most likely value B
Variance A < variance B

A B

AA

Fig. 4-Alternative Comparison, Case 4

Most likely value A < mast likely value B
Variance A variance B; most likoly value A < most likely value B

t, Varince A' variance B. variance A',, variance A

Variance B'< variance B
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variance. If variance is low A' and B', the situation is as in Case 2; costs are
different and offer a basis for choice as conclusive as the magnitude of the
difference might indicate. Larger variances, A and B, diminish the importance
of the most-likely-value cost difference. At some combination of "closeness"
and high variance the cost difference may not be of significance in the selection
of an alternative. In any case, quantification of the probabilities of the differ-

a• ences is a useful contribution to the decision maker's understanding.
These four examples, it should be noted, differ only quantitatively. They

are offered in these forms to illustrate the range of possibilities in which useful
information may come from a knowledge of the probability distributions of
total cost.

METHODOLOGY

This section presents the basic methodology of two variations of the Monte
Carlo model. One assumes that uncertain inputs can be characterized by Beta
distributions. The other variation uses the Weibull distribution.

Overview of Logic
Since the two variations of the Monte Carlo technique are identical as to

logic and statistical methods, the general logic of both models can be discussed

together. Basically the models consist of a Monte Carlo simulation, a listing
of the simulation results by class intervals, and a plot of the output distribu-
tions. In the simulation the value of each input parameter is. chosen randomly,
based on the probability distribution of the parameter. When this procedure
is repeated many times, a range of values is produced. These values are aggre-
gated into a number of class intervals and results are plotted. Finally, since
the results of the simulation produce a very crude plot, a smoothing routine
produces a more regular version of the output distribution.

Beta Variant

This approach is quite similar to one formulated by P. Dienemann of The
RAND Corporation.3 It assumes that cost distributions can be approximated
by Beta distributions. These are unimodal and continuous finite at both upper
and lower bounds and can be skewed or symmetric.*,5 This section discusses
(a) required inputs, (b) general logic of each technique, and (c) outputs.

Inputs. To specify the Beta distribution for. an input variable the following
input parameters are required:

(1) XP (the most probable value of the distribution): If one views the
probability distribution of an X, Y plane, the most prob4i&A value corresponds
to the point having the greatest Y value. For example, the points P and P1 are
the most probable values for the distributions shown in Fig. 5. In the figure
the abscissa describes the values that the input variable may assume and the

*A more cor rehensive discussion of this type of distribution can be found in
Mood and Grayblll, p 129.
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ordinate gives the likelihood of occurrence of each of those values. In the
symmetric distribution (curve A of Fig. 5) the most probable, or modal, value
as it is generally known also corresponds to the expected or mean value.*

(2) XH (high value): This is the point to the right of the modal value
where the probability distribution meets the abscissa given the X values in-
crease from left to right. In Fig. 5 the points H and H, are the high values.

U.

tui

w U B

U-U

L L P P1  H HI

COST

Fig. 5-Typical Beta Distributions

Skewed left Symmetric Skewed right

High •iŽi ~variance

Medium
variance

Low
variance

Fig. 6-Sample Set of Distributions

(3) XL (low value): This is the point to the left of the modal value where
the probability distribution meets the abscissa given the X values increase
from left to right. In Fig. 5 the points L and L, are the low Values. In Fig. 5
they are the zero point of a standard X, Y coordinate.

(4) Distribution Type: Finally the user must compare his concept of the
probability distribution of the input variable with a set of standard distributions
and choose the one that most closely approximates his concept. The set ok
distributions now being used is shown in Fig. 6. These distributions can be
described qualitatively on the basis of (a) being symmetric or skewed or (b)
having different degrees of variances. This is illustrated in Fig. 6. Most un-

! *For a strict definition of this see Mood and Graybill,Z p 103.
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certain inputs should be approximated reasonably by one of the nine distribu-
tion types.

(5) The Cost Model: The user must provide the costing equations thatI,4ý
compose his cost model. These are embedded within the uncertainty analysis zi
model and are necessary to compute the values from which the final plot of the

L distributions is to be made. To illustrate with an extremely simple example,
suppose one were interested in calculating the probability distribution of per- 7
sonnel and maintenance costs for an aircraft battalion. Further, suppose per-
sonnel costs were available on a per capita basis and maintenance on a per
aircraft basis, then the cost model submitted by the user might look like this:

F1 = number of men x dollars per man
F2 - number of aircraft x maintenance cost per aircraft

E Total cost = F1 + F2
The five types of input described above must be prepared for each input

variable in the cost model. The neceasary model inputs having been discussed,
the general logic of the model ma5 now be considered.

For various

levels of

For each cost input aggregaton

Monte Sufficient Compilation

Cost
I simlton. teraions results

No

Fig. 7--Monte Carlo Technique, Beta Variant

Logic and Output. Figure 7 illustrates the basic methodology of the model.
For each of the uncertain costs inputs, the four required parameters are pro-
vided by the user. Using this information, the model randomly selects a single
value for each input. This particular set of values is then input to the cost model
that is now embedded in the uncertainty model. This produces a particular set
of output values that are stored for use later in building the final distribution
curves. The process is repeated 1000 times, which should be a sufficient
number of iterations to develop an accurate total cost distribution. The number
of iterations can be changed easily to meet user requirements. If the specified
number of iterations has not been run, the model will recycle to again (a) ran-
domly select different values for each input, (b) compute output values for these
selected inputs using the embedded cost equations, and (c) store these results
for further use.

When the specified number of iterations has been run, the model moves
to a new phase. This involves compilation of the results of e ch run to (a)
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prepare frequency distributions for aggregate cost and (b) compute statistical
measures such as mean and variance. First, the values are ordered into class
intervals covering the range of possible values. The frequency diagram pro-
duced by this ordering is then smoothed to produce the more familiar form of
probability distribution illustrated in Fig. 7. The next chapter contains a more
detailed description of the actual form of output generated by the model.

Weibull Variant

In this approach inputs are characterized by a Weibull distribution.*, ,
Weibull distributions, like Beta distributions, are unimodal continuous and can
be symmetric or skewed but, unlike Beta distributions, are infinite at both
upper and lower bounds. Since the Weibull variant approach is identical in
logic and output to the Beta variant just described, only the input requirements
of the Weibull variant will be discussed in detail.

For various
ievels of

For each cost input aggregation

XPN, XHNI, PHI, XLl, PLN

Fig. 8-Monte Carlo Technique, Weibull Variant

Inputs. Figure 8 illustrates the methodology of the Weibull variant. As
illustrated in the figure the input requirements for each cost input are:

(1) XP (most probable value): This has the same meaning as the most
probable value input for the Beta variant. The discussion is identical and
therefore will not be repeated at this point.

(2) XH and PH: Since these inputs are interrelated, both can be dis-
cussed in one section. XH is a value of the input that is higher, i.e., greater
than, the most probable value specified for the input.' Pff is the probability
that the value of that input will be some quantity greater than XH. Figure 9
illustrates this graphically. The X axis is the value of the input variable and
the Y axis is the probability of occurrence of different X values. Upon closer
inspection, it is clear that this input specification is analogous to the specifica-
tion of XH for the Beta variant. In the case of the Beta variant the user was
asked to specify XH such that the probability of the input being greater than

*A complete mathematical description of the Weibull distribution can be found in
Refs 6 and 7.



SXH was zero. Thus PH is zero. Since the Weibull distribution is infinite and
thus has no fixed bound the user is asked to specify XH and PH in such a way
that the probability of the value being greater than XH is PH.

(3) XL and PL: These are analogous to XH and PH where XL is some
value less than XP such that the probability of the input variable being less
than XL is PL.

Logic and Outputs. With these inputs the Weibull variant operates in
essentially the same fashion as the Beta variant. Values are randomly se-
lected for each of the cost inputs, and these are processed through the cost
model with results being stored for development of the final distributions.
After the specified number of iterations is completed the model orders the
results of each iteration and develops frequency distributions, which are
smoothed and then finally graphed.

Model Limitations. The techniques developed in this paper provide many
L advantages over more conventional forms of cost analysis. Uncertainty about
SInput variables can be explicitly described. The simultaneous interaction of

uncertainties in many variables can be assessed and then graphically displayed

IP

XL XP XH

Fig. 9-Weibull Distribution

to those confronted by decision. The sensitivity of final results to each or a

set of inputs can be efficiently tested. However, it would be at best naive to
claim there are no disadvantages to use of these techniques. Some major con-

, siderations are:

(a) The assumption of Beta or Weibull distribution may not be a sound one.
(b) Much additional input information is necessary to operate the model.

F. (c) The model assumes independence of the input variables. This can
prove limiting in certain situations. There are at present several approaches
to handling dependency. Among these are incorporation in the model of the
functional relation between the variables, statement of the dependent variable
in terms of auxiliary variables, and use of joint probability distributions.
Though these can eliminate dependence in a majority of costing problems, the
systematic handling of input dependency remains a very open area for research.

[12



Chapter 2

IMPLEMENTATION Or MONTE CARLO MODELS

A thorough understanding of the input requirements and output interpreta-
tion of uncertainty analysis models is necessary before attempting to apply the
models to specific problems. The user of the models should be aware of model
limitations, sources of input, output interpretation, and the differences between
the Beta and Weibull models in order to implement the models effectively. A
discussion of computer time requirements for the models is presented to ac-
quaint the potential user with the anticipated costs of applying the program to
a given problem. Format of inputs, computer program logic, and complete
program listings are presented in the appendix.

SOURCES OF INPUT INFORMATION

The Beta and Weibull simulation models are designed to handle any type
-of cost function. Information concerning uncertain variables may come from a
variety of sources. The user of the model must be prepared to obtain the pre-
cise input information required by the model from these diverse sources.

In many cases the best source of information about an uncertain input is
a person or agency familiar with the variable in question and possible sources
of variation. For example, a certain cost model may require the cost of a
newly designed equipment item as an input. An engineer who is working on
the design of the equipment and who is acquainted with the possibilities of pro-
duction delays and future design modifications may be the best source for nec-
essary inputs. The input is still an estimate, but by minds more intimately
informed on the details of a specific variable.

Another example is a cost model that requires manpower level as an in-
put. The best source of information may be an experienced military advisor
who is familiar with manpower requirements under varying circumstances.
In both cases, the expert providing the information may be unfamiliar with
statistics and the precise meaning of model input requirements such as finite
upper and lower limits or assignment of probabilities.

t It is necessary for the user to precisely define the variable that must be
estimated and to carefully delineate the information needed from such expert
sources of information. An excellent example of techniques for obtaining pro-

S gram inputs from such sources is presented in "A Technique for Probability
Assignment in Decision Analysis" by W. D. Lamb.4
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Information concerning uncertain inputs is frequently derived from sta-
tistical techniques such as regression and correlation analysis. Examples are Y

(a) cost-estimating relations that express the cost of equipment or material as
a function of design or performance characteristics, (b) overhaul rates for
military vehicles, and (c) the ratio of draftees to total accessions to the armed
services. Information obtained from regression models can be readily trans-
lated into the form required by the uncertainty analysis models. Whether the
best information source is an engineering expert, a regression model, or any
combination of sources, the information can be expressed in the form required
for an input in the uncertainty model.

MODEL INPUT REQUIREMENTS

The Beta Model

The necessary inputs for the Beta model are:
(1) XP: The most likely value of the variable
(2) XH: A finite upper limit
(3) XL: A finite lower limit
(4) Distribution type*
The first three inputs must be obtained from the best available source;

the fourth can be derived from the first three by the user. The most readily
available input should be XP, the most likely value of the variable. Obtaining
finite upper and lower limits presents a more serious problem.

In many cases the expert source of information will hesitate to provide
a finite upper limit for an uncertain variable, for to do so would be to imply
that the value of the variable cannot possibly exceed this limit. Consider the
case of the engineer estimating the cost of an advanced-design engine at an
early stage in its development. The remote possibility of a major change in
end-item design characteristics or an insoluble technical problem could drive
the cost up considevbly. These possibilities may preclude determination of
a finite upper limit or require an extremely high upper limit to account for any
feasible situation. Similar problems could be encountered by the military ana-
lyst who is predicting troop strength in some future time period. The prob-

ability, though very small, of an armed conflict requiring massive troop build-
up or of a technological breakthrough that will replace existing manpower re-
quirements dramatically must be considered in establishing the limits of the
distributioh.

The finite nature of the Beta distribution implies that the value of the un-
certain variable must remain within the range described by the upper and
lower limits with 100 percent certainty. The distribution of an uncertain var-
iable obtained through regression analysis with normal error terms has in-
finite range. The model user can, however, use a 99 percent confidence in-
terval as a reasonable proxy for certainty.

Once the most likely, high, and low values are determined, the model user
can derive the distribution type. If the difference between the upper limit and

*Distribution types characterized by direction of skewness and relative variance
are presented in Fig. 8.
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the most likely value (Xit - XP) equals the difference between the most likely
value ant, the lower limit (XP - XL), the distribution is symmetric. If (XP - XL)
is greater than (XH - XP), the distribution is skewed to the left. If (XH - XP)
is greater than (XP - XL), the distribution is skewed to the right. Once the
direction of skewness is determined, the user can ask the expert source to
choose from the three figures representing the relative variance of distribu-
tions in the category. If the information is obtained from a regression model,the symmetric medium variance curve is the most appropriate since it approx-

imates the transformation of a normal curve to a Beta distribution.

The Weibull Model

Weibull input requirements are:
(1) XP. The most likely value
(2) XH: The upper limit
(3) PH: Probability that the value of the input will exceed XiH
(4) XL: The lower limit
(5) PL: Probability that the value of the input will be less than XL
Values for XP, XL, and XH are obtained as in the preceding model. The

major difference is that XL and XH are not finite limits. Some of the problems
associated with the Beta model are thus eliminated. The expert source may be
more willing and able to present bounds with a probability value attached to
them. When uncertain inputs are obtained by means of regression analysis
with error terms normally distributed, the Weibull input requirements are
easily and accurately met.* Since the variable has a known normal distribu-
tion, XP is the predicted value of the variable and PH and PL are chosen by
the user to determine XL and XH. If the user chose 5 percent as values for
both PH and PL, a 90 percent confidence interval about the predicted value
would yield XL and XH.

OUTPUT FORMAT

The outputs of the Beta and Weibull Monte Carlo programs are identical
in format. Both routines produce two plots of the total cost distribution and a
table of frequencies within class intervals.

The first plot produced by the program shown in Fig. 10 is that of the
total cost distribution as produced by the Weibull Monte Carlo simulation.
The Y axis, running horizontally across the top of the computer output page,
measures the number of total cost estimates lying within a given class inter-
val. The X axis, running vertically along the left-hand side of the computer
output page, measures total cost. The "Xs" that form the distribution show
how many times total cost fell within each interval. Four other values, XMIN,
XMEAN, XMAX, and STD DEV, are printed. These represent the minimum
total cost, the mean total cost, the maximum total cost, and the standard devia-
tion of the total cost distribution. In Fig. 10, for example; t1- minimum cost
is $98,422, the mean cost is $116,111, the maximum cost i3 $131,859, and the
standard deviation is $ 5697.

*'The Weibull density function is nearly symmetric (approximating tlhe normal dis-
tribution) when its shape parameter is approximately 3.5." See Lamb, 4 p 15.
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The second plot, Fig. 11, is a smoothed version of the first. The cost
data generated by the Monte Carlo simulation are smoothed by fitting them to
a polynomial by the method of "least squares."* The frequencies are rounded
to the nearest integer.

The table of frequencies produced by the program and shown in Fig. 12
has four columns of information. The leftmost column contains the midpoint
of each of the 100 class intervals. Column 2 contains the number of total cost
estimates, produced by the Monte Carlo simulation routine, that lie within
each cost interval. The third column contains the Y value produced by the
smoothing routine for each class interval. This value is rounded to the near-
est integer. The fourth column is the difference between the second and third
columns. In Fig. 12, for example, the highest class interval has a midpoint of
$131,692, a frequency of 2.0, a smoothed frequency of 2.4291, and the differ-
ence between the two frequencies is 0.4291.

COMIPUTER TIME REQUIREMENTS

The purpose of this section is to provide the user with computer time re-
quirements as a measure of cost to enable him to evaluate these programs in
terms of cost effectiveness.

"For the Beta and the Weibull programs two parameters were varied in
order to determine the sensitivity of computer time consumption. These
parameters are the number of iterations in the Monte Carlo simulation and
the number of variables. It was considered a priori that these two parameters
would explain most of the time variations from run to run.

The number of iterations was set at 500 and 1000 for the purposes of ex-
perimentation. The number of cost variables was changed from 3 to 15. Along
with the change in the number of variables there was a change in the complex-
ity of the algebraic operations. These two cost models are shown in Fig. 13.

Timing results for the Beta and Weibull programs are shown in Table 1.
Total time results include execution time, compiler time, system time, and
load time. Since execution time varies with the number of iterations and the
compiler, load, and system times are roughly fixed, it is also useful to see
the execution times alone since they are roughly analogous to recurring costs.

A number of points should be noted in interpreting Table 1. First, the
times shown are for an IBM 7044. If the programs are used on a different
computer the times will vary. Second, the total times are quite small, neverS~exceeding 5 rain. Third, for the most part execution time is less than 50 per-
cent of total time. Finally, the execution time will not vary greatly with the

number of variables since the major difference is the number'of data cards
that must be read by the computer.

From this information it seems probable that the vast majority of cost
models will require less than 10 min of computer time.

*The method of least squares chooses the coefficient of the fitted polynomial so

that the sum of the squared deviations between the polynomial and real data is mini-
mized.
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TABLE I

Computer Time Requirements

Total time,a min Execution time
Program I

V=b v =15 V3 V 15
Beta }

Ic = 500 2.64 3.07 0.64 0.87

I = 1000 3.1? 3.30 0.74 1.21
We ibu II

I =500 2.39 2.67 0.25 0.44
I ý 1000 2,49 2.92 0.35 0.69

"arotal time includes compiler time, system time, load time,

and execution time. All times are measured on an IBM 7044 com-
puter.

bv = number of cost variables.
cI = number of iterations.

CONCLUSION

The Monte Carlo simulation models provide a tool for expressing uncer-
tainty in item cost estimates and deriving a corresponding expression of un-
certainty in total costs. The user must, however, be aware of the potential,
the costs, and the limitations of the models before applying them to solve a
particular problem.
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WEIBULL INPUT REQUIREMENTS

The user of the Weibull model must provide four types of input:
t; (1) Cost model specifications

(2) The number of cost inputs
(3) An arbitrary 6-digit integer
(4) Cost data

Tnese four types of input will be considered in turn.
114 e user must supply the cost model to the first computer program

(W).iBTE4) in the position shown in Fig. Al. This cost model is subject to
9,ever-k restrictions. First, it must be specified in FORTRAN JV.

7 Second, the
tot- :ost must be called output (IHIST). Third, the cost variables must be
called FDATA(I) where I is any integral value from 1 up to the number of cost
inputs that the user specifies.

An example of a user-specified cost model is shown in Fig. A2.
The second and third types of input must be provided on a punched card

immediately following the first program, WEIBTP. The format of that card is:
Columns 2 to 4: An integer signifying the number of cost inputs. This

number may take any integral value from 1 to 100
Columns 5 to 10: An arbitrary 6-digit number used to generate uniform

random numbers
Columns 11 to 80: Blank

cost The final type of input provided by the user is the cost data. For each
cost input the user must provide the most likely value, a low value and the prob-
ability that the actual value will be lower, and a high value and the probability

that the actual value will be lower. Each value and probability is written on
a pu'irch card with the following type of format:

±+X.YYE±ZZ

where LX.YY raised to the power +ZZ is the value or probability. For example,
-2700 would be written as -2.70E+03. The card format for each cost input is:

Columns 2 to 10: Low value
Columns 12 to 20: High value
Columns 22 to 30: Most likely value
Columns 32 to 40: Probability that actual value will be higher than the

high value
Columns 42 to 50: Probability that actual value will be lower than the

low value
Each cost data card is placed in a sequence such that its position in the

stack of cost data cards is equal to the subscript of the cost input variable it
represents. Thus the card containing FDATA(5) would be the fifth in the stack
of cost data cards and that containing FDATA(15) would be fifteenth.

S=AD24
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To further elucidate the input requirements the following example is
given. At a very high level of aggregation the total recurring costs of an
infantry division can be thought of as the sum of operating costs, replacement
costs, and pay.

For a planned infantry division the most likely annual operating cost
might be $1.0 million, but there is a 10 percent chance that operating costs
might be higher than $2.0 million or lower than $0.8 million. Similarly, annual
replacement costs most likely would be $0.5 million with a 10 percent chance
of being lower than $0.4 million or higher than $0.8 million. Annual pay most
likely would be $0.5 million and would have a 25 percent chance of being $0.4
million and a 20 percent chance of being $0.6 million.

The user-supplied cost model is shown in the equation

OUTPUT(IHIST)=FDATA(1)+FDATA(2)+FDATA(3)

OUTPUT(IHIST) is total recurring cost, FDATA(l) is assumed to be operating
cost, FDATA(2) is replacement cost, and FDATA(3) is military pay.

Next the user must supply a data card containing the number of cost
inputs and a 6-digit random number. An example of such a card is shown in
Fig.. A3.

The 3 in col 4 signifies that there are three cost inputs (operating costs,
replacement costs, and military pay). The number 987654 is an arbitrary
integer used to generate random numbers.

Finally, the user must supply the input cost information. Since FDATA(l)
refers to operating costs, the first input cost data card deals with operating
cost. Fig. A4 shows the required input cost data card.

Note that the low, high, and most probable values are written in the
form:

0.8 x 101
2.0 x 106
1.0 x 106

The input cost data cards for replacement costs and pay are similarly
prepared. The user-provided data (excluding the cost model) for this example
are shown in Fig. A5.

To place the inputs in proper perspective to the rest of the computer
program, Fig. A6 shows the program deck configuration. The user-provided
inputs are indicated by arrows and the 7044 control cards are noted by
asterisks.

BETA INPUT REQUIREMENTS

The Beta model, like its Weibull counterpart, requires four types of
input:

(1) Cost model specifications
(2) The number of cost inputs
(3) An arbitrary 6-digit integer
(4) Cost data

26
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The first three types of input are identical to those required for the
Weibull model. The cost data requirements are similar but not identical.

The user must imbed within the first program deck (called BETATP)
a cost model. Figure A7 shows the position of the model within the program.

"The cost model is subject to a number of restrictions. First, it must be
written in FORTRAN IV.7 Second, the total cost must be called output (IHIST).
Third, the cost inputs must be called FDATA(I) where I is any integral value
from 1 up to the number of cost inputs that the user specifies.

An example of a user-specified cost model is shown in Fig. A8.
The second and third types of user-supplied inputs must be placed on

a punched card immediately following the third subroutine, EVLINT. The
format of that card is:

Columns 2 to 4: An integer signifying the number of cost inputs. This
number must be a pos.tive integer no greater than 100.

Columns 5 to 10: An arbitrary 6-digit number used to generate
uniform random numbers.

Columns 11 to 80: Blank.
The final type of input to be furnished by the user is cost data.
For each cost input the user must provide the most likely value, a low

value, and a high value. Additionally, the user must choose a standard Beta
distribution that best matches his conception of how the probability distribution
would look. For each cost input the above cost data are written on a punched
card with the following type of exponential notation:

+-X.YYE ±ZZ

±zzwhich is equivalent to *X.YY . For example, +34000 would be written as
+3.40E+04. The distribution type is not written using the above exponential
notation but is represented as an integer.

The punched card format for each cost input is:
Columns 34 to 42: Low value
Columns 44 to 52: High value
Columns 54 to 62: Most likely value
Column 63: Distribution type. This type is represented by an integer

with possible values ranging from 1 to 9. Figure A9 shows the type of dis-
S.ibution corresponding to each integer.

The cost input punched cards are placed immediately after the punched
card containing the number of cost inputs and the arbitrary integer.

Each cost input card is placed in a sequence corresponding to the sub-
script of the cost input variable it represents. For example, the cost input
card containing the costs associated with FDATA(5) would be fifth in the
stack of cost input cards.

To illustrate the user-supplied inputs assume, for example, that the
total recurring cost of an infantry division is the sum of operating cost,
replacement cost, and pay. The most likely annual operating cost of a planned
infantry division might be $1.0 million and the upper and lower limits are $2.0
million and $0.8 million respectively. Since it is more probable that operating
' ost, if not $1.0 million, will be higher and since operating cost is quite volatile,

1kC 30
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the cost analyst might choose distribution type 3. Similarly, the annual re-
placement cost most likely, low, and high values are $0.5 million, $0.4 million,
and $0.8 million. Like operating costs, replacement cost is quite volatile and
if the most likely value is wrong it is probably too low. Therefore the cost
analyst might choose type 3 once again. Finally, the most likely, low, and high
values for military pay are $0.5 million, $0.4 million, and $0.6 million. Military

Skewed left Symmetric Skewed right

High ? 3
variance

1 2 3

Medium
variance

f 5 6

Low

variance

5 '9

Fig. A9-Distribution Types

pay does not change much and the most likely estimate is equally likely to be
too high or too low. Thus the cost analyst might consider distribution type 8
to be the closest approximation to his concept of the military pay distribution.

To run the above data in the Beta model, the user must first supply a
cost model. The required cost model is

OUTPUT(IHIST)=FDATA(1)+FDATA(2)+FDATA(3)

OUTPUT(IHIST) is the total recurring cost, FDATA(1) is operating cost,
FDATA(2) is replacement cost, and FDATA(3) is military pay.

Next a punched card containing the number of cost inputs and a 6-digit
random number must be supplied. Such a card is shown in Fig. A10.

The 3 in col 4 of that figure specifies to the model that there are three
cost inputs (operating cost, replacement cost, and military pay). The number
123456 is an arbitrary number used to generate random numbers.

Finally, the user must supply the input cost information. FDATA(i)
refers to the first variable in the cost model. Examples of user-supplied
input cost data cards are shown in Fig. All.
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F
To place tihe inputs in proper perspective to the rest of the computer

program, Fig. A12 shows the program deck configuration. The user-provided
inputs are indicated by arrows and the 7044 control cards are noted by
asterisks.

ERROR MESSAGES

The error messages for the Weibull and the Beta programs are identical
except for one message dealing with input distribution types for the Beta pro-
gram. This section lists the error messages (data errors), explains the mean-
ing, and suggests methods for correcting the errors.

DATA ERROR-MODE NOT BETWEEN HIGH AND LOW IN DATA SET XXX

Meaning: There is an error in cost data card XXX. The most probable
value for cost variable XXX is either equal to or higher than the high value
specified or equal to or less than the low value specified. All data are read
but no simulation is run and no output is produced.

Corrective action: Check to see that the data are punched, from left to
right, in the following order: low, high, and most likely. A second source of
error to check is the exponent of one or more of the three data items. Finally,
check to see that the data are punched in the correct columns.

DATA ERROR-LOW GREATER THAN HIGH IN DATA SET XXX

Meaning: There is an error in cost data card XXX. The low value
specified on the card is greater than or equa I to the high value. All data are
read but no simulation is run and no output is produced.

Corrective action: Same as for the previous error message.

DATA ERROR-DISTRIBUTION TYPE FOR DATA SET XXX
IS ZERO OR NOT SPECIFIED

Meaning: This message is only generated by the Beta program. The
type parameter on cost data card XXX is either not specified or is specified
as zero. All data are read but no simulation is run and no output is produced.

Corrective action: Check cost data card for the missing parameter.
The parameter may be punched in the wrong column.

ERROR MESSAGE-RANGE OF TOTAL COST ESTIMATES IS LESS THAN TENS~PLOT DELETED

Meaning: The simulated total cost est~mates have a range smaller
than 10.0. In this case the X axis cannot be designed and the plot is deleted.
Program execution continues.

Corrective action: The cost data cards may be altered by increasing
all the exponents.
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COMPUTER HARDWARE AND SOFTWARE REQUIREMENTS

This section examines the computer facilities required to run the
Monte Carlo programs. Since many of the requirements are themselves a
function of the kind of computer used, the following discussion should be con-
sidered only a guideline.

Hardware

Four hardware features are required for the Monte Carlo programs.
First, there must be some method of reading punched cards since the

program and data inputs are on punched cards.
Second, there must be sufficient main (core) storage to contain the

w. program. No precise storage requirements can be formulated because of
variations among computers; however, it can be stated that the variable arrays
employed in the progtrams require 3000 words and the programs themselves
are at least as large. Ten thoimand words of storage ought to be sufficient.

Third, there must be sonm at.xiliary storage device to hold intermediate
results. This device might be a tape drive, a disk, or a drum. The capacity
of the storage device must exceed 2000 words.

Finally, there must be a printer to print the output. The printer must
have a capacity of at least 120 characters per line.

Software

The programs are written entirely in 7040/7044 FORTRAN IV. They do

not use either "Print" or aPunchN statements.
The programs are designed to run under the 7040/7044 operating sys-

tem. Use with any other computer will entail the user's supplying a different
set of computer control cards.

PROGRAM LOGIC

* "The purpose of thin section is to provide sufficient information about
the programs per se to allow them to be modified successfully. A verbal
description of the Welbull program and subprograms is supplied as well as a
description of how they are linked together.* Complete program listings and
flow charts are provided for both programs. The verbal description is keyed
to the program listing. References are made to specific lines of computer
coding. Knowledge of the flow charts, on the other hand, is not specifically
required to read the verbal description. However, the flow charts should
prove quite useful as a general guide to the programmer.

Weibull Program

There are three arrays used in the Weibull program (called WEIBTP).
The first, FDATA, is the array containing the values of the cost input data.
The subscript 100 sets the maximum number of cost inputs that may be used

*The Beta program is similar in format and employs identical output routines.

S~36

, [ I



I1

in a cost model. If this number is to be increased then FDATA and the second
subscript of WYBARY, a second array used to simulate the FDATA, must be
altered in the dimension statement. The first subscript of WYBARY is fixed..4
The third array, output, is dimensioned according to the number of iterations
of the simulations to be run. If the number of iterations is to be increased
then the subscript of output must be increased.

There are six internal program parameters that are set immediately
after the dimension statement. First, there are three parameters, 101, 102,
and 103, that set the device numbers for the system input device, the system
output device, and an intermediate storage device. The fourth parameter,
ITER, is set to the number of iterations of the simulation to be run. If ITER
is increased, then the subscript of the array output must be increased. (An
array in the plot routine must also be increased.) The fifth parameter,
NPAGES, refers to the number of pages each plot is to occupy. NI, the sixth
parameter, sets the number of class intervals to be used in constructing a
frequency distribution of the simulation output. If NI is changed, a number of
arrays in the plotting routine (discussed below) must be increased also.

After all internal parameters are set, two external parameters are
read: NSETS, the highest subscript of FDATA actually used by the cost model,
"and IRANDM, an arbitrary 6-digit integer used to generate random numbers.

After the above-read statement, the next block of coding (through
statement number 122) deals with reading the cost input data and defining the
Weibull distribution around each input. First, the cost data are read into the
computer. Then a check is made to see that the high cost is greater than the
low cost. If it is not, an error message is written and a flag is set in the
parameter ITER by setting ITER equal to 1. A second check is made to see
if the mode falls within the range of the high and low. If it does not, an error
message is written and ITER is set to 1. After the above checks are made
ITER is checked to see if ITER = 1. If it does, the rest of the data is read and
checked but no simulation takes place. Data are written on device 103 signaling

that errors did occur and the run is stopped. If no error occurred, then initial
parameters for a Newton-Raphson iterative process for specifying the Weibull
distribution for a given input variable are specified. The iterative process is
contained in the coding starting at statement number 3100 and extending to
statement number 3110. The last four statements before statement number 122
transfer the three parameters specifying the Weibull distribution to WYBARY.
Then control returns to the second read statement and the process is repeated
until all the data are read and their Weibull distributions are specified.

The next block of coding, through statement number 9960, is the simula-
tion. Basically the coding consists of a double loop, the inner running from
statement number 9980 to statement number 121, and the outer from statement
number 9980 to 9960. The inner loop generates uniformly distributed random
numbers and then distributes them according to the Weibull distribution asso-
ciated with the input data. The process is repeated until all input data have
values. In the outer loop the cost model is evaluated on the basis of the values
for the input data. The above process is repeated ITER times, i.e., until thereI are ITER values for the total cost output.

The next block of coding, to statement number 9961, writes the number

of iterations, the number of class intervals, the number of pages for each plot,
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the number of data inputs, and the simulation results on intermediate storage
device 103. The storage device is backspread so as to be in position to be read•:• and the program terminates.

The final section of coding contains the error messages and format

statements.

Plot and Frequency Distribution Program

The plot and frequency distribution program (called HSTPLT) is
separate from the Weibull and Beta programs. In an effort to reduce core
storage requirements, HSTPLT is loaded on top of the preceding Weibull or
Beta programs with all preliminary results being saved on an intermediate
storage device.The internal organization of HSTPLT includes a main program to plot

the results of the simulation and a subprogram to transform the simulation
data into a smooth curve. The program and subprogram are considered inS~turn.

The program HSTPLT is conceptually divided into two parts. The first
part sets up the output histogram and calculates the mean and standard devia-
tion of the data. The second part plots the output data. In the first part there
are four arrays. NFREQ is dimensioned as large as NI, the number of class
intervals in the histogram. NFREQ is the frequency of output in each class
interval. XVAL is dimensioned the same as NFREQ and is the midpoint
value for each class interval. A third array, SMOOTH, contains the smoothed
frequencies corresponding to each value of XVAL and is also dimensioned the
same as NFREQ. The final array is output having a dimension of ITER, a t
parameter that is set in the Weibull and Beta programs.

There are five internally set parameters. The first three, 101, 102,
and 103, are the numbers of the system input device, the system output device,
and an intermediate storage device, respectively. The fourth parameter, KOR,
is the degree of the polynomial used to smooth the simulation output. The
final parameter, [HOPE, is set to zero initially. [HOPE counts the number of
times HSTPLT is executed. When IHOPE is 1, the program is operating on
the unsmoothed data. When IHOPE is 2, the program is dealing with smoothed
data. In addition to the above parameters there is a data statement that estab-
lishes four graphic characters for the Y axis of the output plots.

After the internal parameters are set, the program reads internal
parameters saved on storage device 103. These parameters are described in
the section dealing with the Weibull and Beta program logic. If the parameter
ITER is equal to 1, then there was an input data error and execution is halted.
Otherwise the simulation output is read.

Statement number 445 begins the main loop of the program. IHOPE is
incremented to show the number of times that the loop is being executed. The
first block of coding, through statement number 91, is concerned with finding
the maximum and minimum values produced by the simulation. Immediately
following statement number 91 is a block of coding that calculates the length
for the plot and histogram class intervals. Statement 90 computes the mid-
point of each class interval. After statement number 90, through statement
number 92, the frequency or the number of observations falling within each
class interval is calculated. The method is basically to start from the lowest
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class interval and to test whether the upper limit of the class interval is
greater than or equal to the value of an observation. If so, the number of
observations within the class interval is increased by 1. Frequency calculation
occurs only during the first execution of the main program loop, since during
the second execution smoothed frequencies have been supplied by the smooth-
ing subroutine. The remainder of the coding for the first portion of HSTPLT,
through statement number 3200, consists of a straightforward calculation of
the arithmetic mean for all observations and of the standard deviation.

The plotting routihe is a conceptually separate part of HSTPLT. How-.
ever, technically it is only a continuation of the coding for HSTPLT. There
are three arrays. First, LABELX contains the labels used for the X axis of
the output plot. A dimension of 16 is given to LABELX, with LABELX(16) set
to a high value, although there are only 15 labels printed owing to an idio-
syncrasy in the coding that prints the X axis. LABELY contains the Y axis
labels and LINE contains the graphic characters used to generate the Y axis.

The first two lines of coding in the plotting routine determine the
number of printer lines per class interval. The number of lines is at least 1.
These two lines in conjunction with the value of NI control the number of
pages the output plot will fill. If NI is greater than 50, then the number of
pages is NI/50 (rounding upward to the next highest integer).

The next block of coding, through statement number 450, constructs the
scale for the X axis and fills the X axis labels with the proper values. The
fourth line of coding (the line preceding statement number 400) checks to see

if the range of the values for the simulation output is greater than 10. If it is
not, control is transferred to an error message routine. The coding starting
at statement number 400 and ending at statement number 420 constructs the
increments for the X axis labels. The coding from statement numbers 420 to
432 establishes the value of the first label and the remaining coding, through
statement 450, establishes the values for each label.

The next five lines of coding, through statement number 460, constructs
the Y axis increments (first two lines) and determines the Y axis label values
(last three lines).

The next section, through two lines past statement number 483, writes
the Y axis labels, the Y axis itself, and the minimum value of X.

The next block of coding, extending through statement number 499, prints
the X axis labels, the plot, and the mean value of X. The inner loop in this
coding (DO 499 J=l, INTWID) is essentially unused unless the number of class
intervals (NI) has been reset to a value less than 26. The plot logic will nct
be discussed in detail. However, the coding idiosyncrasy with respect to
LABELX (16) noted above will be explained. After the last label has been
printed, by statement number 471, the subscript of LABELX is increased to
16. If LABELX (16) is less than the minimum value of X, then the first "IF"
statement after statement number 475 will eventually cause statement number
471 to be executed one extra time.

After completing the plot the maximum value of X and the standard
deviation of X are written. If IHOPE is 2, i.e., if this is the second time
through the main program, execution is halted. If this is the first time, the
smoothing routine is called. On return from the smoothing routine, the
smoothed values are rounded to the nearest integer and control is transferred
to the beginning of HSTPLT.
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The smoothing subroutine is SHARE subroutine FOLYFT and documen-
tation is available through the SHARE organization. In general, the subroutine
fits a polynomial to the unsmoothed data using the leasi-squares criterion.

The dimension of the arrays XVAL, NFREQ, and SMOOTH must equal
NI, the number of class intervals. Thedmension of C, ýIMYX, and AMEANX
must equal KOR, the degree of the polyiiiTiat being used to smooth the data.
The dimen,ion of A must be KOR squared and the dimension of SUMX must

i be two times KOR.

A series of flow charts, Figs. A 13 to A19, follows, in which various
&• routines of the Monte Carlo simulation are portrayed.
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t ~~WEIBULL PROGRAM~ LISTING__ _

SJOB 009*3039JOHNSONvWWiM0NTIE __________
$OPEN S*SU109REWIND___ _________

SIBJOB MCCOST 1
SIBFTC WEIBTP NODECK__________ __ _________

DIME-NSION pO-ATA(100I,*OUTP-UT(1O000)WYBARYE3,100) ____

102=6-____

I-TERS1060

NPAGES=2_____ ___

_ _REA5(!OI*IO.) NSETS91RANDM ~ ____________-

D0 122 JOTiu1,_NSETS
READ F1O1,104) VZtYl9VOvP1,P2 _ _____________

Tf-(hVl-VZ.LT.o.l GO TO 9961 -

9963_IF (VO*LE#V2 *OR* VO*GE*VlJ GO TO 9962
9964 IF (ITER .EQ. 1 GO T-0 ~ 122___________

IF ((VO-V2).LT.CV1-VOH) GO TO 1
EMI=4.0 ______________ ________

EM2m3.5 ______ ____________________

GO TO 2

PLN=-ALOG(P) --

Al=(PLN*(EM1/(EM11dlo,)**(l./EMl)________
EK1.(VI-Vo*A1)/(1.-A1)
81=-((EMI-1.I/EM1)*U(V2-EK1)/(VO-EK1)2**EM1
P2A=EXP(Bl)
F1=P2-P2A ____ _________

3100_A2=(PLN*(EM2/tEM2-1.1 ) )4**U;/_EM2) -____ ______

EK2=(Vl-VO*A2)/(l.-A2) ____ _______________

B2--((EM2-1.)/EM2)*(UV2-EK2I/(VO-EK2I 1**EM2
IF 482*GTd-89.5)) GO TO 105 ________

GO TO 106 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

105 P28=EXP(B2)
106 F2zP2-PZB__ _______ _______

_______________ GO ______ TO________________3110___________________

P2AvP2B ___ ____________________

___ EMTEMPnEM2 ____________ _____________

EM2=EM2-F2*( (EM2-EM1)/(F2-Fl))__________7
EMluEMTEMP ___ _______ __

FlzF2

3110 FLAMDA=(VO-EK2)*(EM2/(EM2-1.I)**(1./EM2) ________

WYBARY(1.JOTi=FLAMDA______
WYBARYC 2 JOT )EM2 ______ ___ ____

WYBARY( 3*JOT)=EK2 -__________ ____

122 CON7INUE______ _____( ~~~~IF (ITER .EO* 1 I GO TO 9960 - _ ___ ____-

IHISTu1___________ _______ ____

___ DATA JK /100043/ _____ _____ _____ _____

9908 DO 121 IKEz1,NSETS -- ____ __ _____

LaIRANDM ___ _ _________

777 L -7-812 !*L __

LsL-IL/JK,*JK___________ ______

TTiooooo000 888,888,777 - ___________

888 RANDdOMxFLOAT(LP/160_000.____ __ __I4
-- --- -



RANLOGu-ALOG (RANDOM) -

C THE COST MODEL IS INSERTED HERE

OUTPUT (IfifT) .FDATA(1)DAUA(2 6WOT-A(3+FOATA(4-)+4FDAtAk(-5)-FD-AfA-

IF (IHIST.GE*ITER) GO TO 9960 ________ ______

____IHISI xIHIST+l _____

-GO TO 9908 ___

990WRITE1iO31ITERtNfioPAGEStNSETS -_______

-BACKSPACE 10 ____________ ____________

CALL EXIT _________ _______

9961 WRITE(102,100) JOT ____ ____

100 ORMT 455H DATA ERR-OR ----L-OW G-R-EATY-ThA-N-4-HX-FWD-AIW-SET-Nu-MBER,ý

10-7 --ORMAT(56H DATA ERRR W----iObDE-N-o-V-ETIEENW H-GWAII L.Ow INDAT-A ET,
*914)

992GO TO 9963 ______________________

992WRITE (102*107) JOT
ITERal __ _____________

GO TO 9964 ___ ____________

END ____________

SENTRY WEIBTP
6431763 _____________________ ____

+1.30E+0j4 +2.OOE+04 +1.ý54E+04 0*0.1E+OO +O.O1E+00______
+S.OOE+03 +6.goOE+Q3 +5.45E+o3 +OeO1E+00 *OvOlEtO _______

+1.80E+04 2*50SE+04 +2.1OE+04 +0.01E+00 *O.0ikE+OO
+1*OOE+04 +1*50E+OL +1.17E+O4 +O901E+00 O*OIOE+O0 _____

+1*50F+04 +2*0OE+O4 +1076E+04 +0901E+00 O*O.OE+02
+1.OO0E,+O4 +1*.15E+04 +1.F06E+04-+O.O1E+00 +0O1OE+o0 ______

$192013 COMPLI -- ----

SIBFTC Z-S7-jT__JNQDECK I_________

C EXTRACT OF HISTO__________
DIMENSION NFREG(100),XVAL(100),SMOOTHIIOO).OUTPUT(1000)

- IN.TEGERBLANK* 9DQ!,APOS -__________

DATA BL.AfK.tXvOOTvARPS/lH 91HX.1Hot1H'/v

102v6__________I7
READ (1031 ITER N19HPAGESPNSETS

IF lTER EO.1 STOP- ____

READ4103) (OUTPUT(K)*K=1,IlTER) _________________

ITER25aITER/25 ___________

KOR=25 _________________

C CALCULATES MEAN, STANDARD DEVIATION, AND PREPARES HISTOGRAM
IHOPE=O

445 IHOPEnIHOgE+l ______

-& CALCULATE INTERVAL RANGE (RINT) FOR NI INTERVALS

XMIN aOUTPUT41)_________________

4B _ _



91 91__ K_ -- _v~E

IF(OUTPUT(KI*GT.XMAX)_XMAX-OUTPUT(K)

DO 90 K u *N

90XVLM* ,XVAL(N)+ 1N/2 +___ _________

920 NFREQ(N)NFE(N+

S ~ ~ ~ ~ ~ D 923 K 19lITER ___ ___________

40 SUMSQZSUMSQE.OUTPUT(K)) GEANI*#2 ___

30i SUXVA SUMXSOUTPUOT(KTR-)
XSDEV z SQRTXVFLATRTE

C ALOTTIN ROUSTI-NEWD DEVIATION ______)

40DISQSMESION LABELX(16hLAELY(1),LIE(3
F~~~~I LAOELX( ol GOm999 TO____3210____

C31 DETERMINESGWIDTHOA LT(TING TERVA

320CNTWINUE/N

XRPOTTNG ROUT-XINE -______

IFCT-
DIME SIONRANGELX(16 ___________ _____3

_______________________________________________________

c DiF(XMIN WITH1. GOF PLTO 498NG ___________

lF(lNTCRX.EO.31 INCRX ______

IFICY77NcINR.E? NR3

SDESGN X- - --X----- ---LE



* IF(IFACTRoEO9O) GO TO 420
DO 420 Im1isFACTR__________ ________

420 CONTINUE __________________

SCALOW=XMIN
-423 IFEAB(SCL 1GRE9.O --AND. _ABS SCALOW I oLE. 16. 6_OT0_4_3O -_

I SCALOWaSCALOW/1O. ____ _________

* IFACTR=IFACTR+l
GO TO 425 _ _ _ _ __ _ _ _ _ _ _

F4-30 LOSCALuSCALOW ____________________

IF(_IPACTR.EQ.0) GO TO 4_4_0 __ _____________
DO 440 I101IFACTR, ___ ____________

LOSCALa1OLOSCAL _____ _____________

GO TO 431 -- _ _ _ _ _ _ _ _ _ _ _ _ _

~432 CONTINUE _________ ____________

----LABELX( 1 ILOSCAL+INCRX__ ___________

DO 450 142o15

1450 LABELX(I)=LABELX(1-1)+INCRX __ _______

LABELK NOW CONTAINS 15 NRMNA VLE OB US-ED

C DESIG-N V AXIS SCALE

MAXY=(ITER*5)/NI _______

INCRY-MAXY/1O __ ___________

LABELY( 1 IINCRV ________ ____

DO 460 1=2910 ________ ______

460 LABELY ( I )LABELYCI_-1)+iNCl~R-Y

C FOR SCALE MARKINGS ALONG THE Y AXIS_________

-~WRITE (1O2*462H_)LABELYT()II,1,1Q) PITVSAE- __-

DO 469 1=16*116olO_________
469 LINE(I)wDOT________ _______

DO 481 1=1#15

481 LINE(I)BLANK
DO 482 1-17.11592

482 LINE(I~zBLANK ________

DO 46
JSIOP=1STAR T-i6______ -______ ________

DO 483 I-T5TARTISTOPs2
483 LINEII)=APOS

WR ITE 1102 .403 II INEI I)9,101.116)

C BEGIN PLOTTING DATA POINTS AND LABELING X AXIS

DX*XRANGE/ (FLOAT(INTWID)*FLOAT(NI)I
am FLOATIMAXY)/1000 ______

XVALU=XMIN _____ _____

LAB-i___ ______________
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00 499 K-19NI
D0 499 J=19INTWID ______ __ ________________

YVALU=Oo
I11

477 IF (FLOAT(NFREo(K))*LE*YVALU) G0 TO 475
LINE(I)aBLANK____________

___ YVALU-YVALU+DY
GO TO 477

* ~~475 LINE(IINX ____________________

* ~~XVALU=XVALU+DX____

C PRIN-TX VALUE IF APPLJCABLE _________

IF(FLOAT(LABELXILAB)) OZ1 XVALU) GO TO40

C PRINT XMEAN IF IT OCUR3 IN THIS-1NTRA

1F(XMEANeLT*XVALU O.XENG.XAUD) OT 7
GO TO 472

____470 IFV TXMEAN*LT*XVALU .ORo XMEAN.GE.(XVALUPD-X)I GO TO 473
GO TO 474

4iý71 WRITE(102,405)LABELX(LAB3.ILINE( 111,11=1,1) ______________

* LABULAB+I
GO TO 499 ________

472 WRITE( IO2,406)LABELX(LAa3 .XMEAN, (LZNE(I II),! 6-i-ZT7;
LABxLAB+l
GO TO 499

473 WRITE(102,407) (LINE(It1,11Iao) __________________

GO TO 499
474 WRITE(102,408IXMEAN.4LINE( I~hIInl2.I)
4-99 CONTINUE ___ ___ ____________

WRITE( 1029411)XMAX
WRITE( 102 ,412)XSDEV __________________________

412 FORMAT (///*9H STD DEVzFlO.3) ______ ______________

GO TO 99
498 WRITEE 102,409)

4 ~IF(IHOPE.NE.1) CALL EXIT i
CALL POLYFT (XVALvNFREQ9NI ,KORvSMOOTH)

* 00~D 505 ISlNI ____________________________

-505 NFREO(I)=SMOOTH(II + .500
GO TO 445

~492 FOMU9H,1X4H O00t0,(6X914))
403 FORMAT(116A1/)44FORMAT(6HXMIN noFlO*3//)

*405_FORMAT(I6t9Xi100A1) ______________-

~406 FORMAT(16t3Xv7HXMEAN wpFlO.3w88A1)________________

*407 FORMAT.15*OOAI) -_______________

*408 FORMAT(9X,7HXMEAN zvFlOo3o88AI) ____________

409 FORMAT (79HO;PRROR MSAE RANGE OF TOTAL COST ESTIMATES IS LES
*S THAN TENPOT DMELEED _____________

*411 FORMAT(6HXMAX wvF1O.3)
END

ISIBFTC FTKURV ______

SUBR~OUTINE POLYFT(XVALNFREQNI ,KORSMOOTH)

102=6 _____________

- 103=10 _______________ ___

C POLYOO10O<=RAI



IC DIMENSION X5VAL(1OO) NRiEAQ(100).A(625).C(251,SMOOTH(100i 0

C DIMENSION FOR SELF-GENERATED VALUES POLY005O
DIMENSION SUMX(100)*SMYX( 50) AANX( 50) POLY0060

- PTSaFLOAT(NII ___ _______________

KTORm 2*KOR _______POLY0090

C______ POLY 0100
C INITIALIZATION POLY0110

DO 1 I%1,KOR POLYO120
SMYX(I)z 0.0 POLY0130

1 AMEANX(I)m 0.0 POLY0140
.0 2 Iml.KTOR POLY0150

2 SUMK(I)- 0.0 POLY0160
SUMYU 0.0 POLY(0170

c POLY0180
C NORMALIZATION WITHI RESPECT TO XMAX POLY0190

XVAL loXVAL111_____ __________ _______

DO 707 NOJulqNI _____

707 XVAL(NOJ)=XVALINOJ)-XVALl _______

XMAX=XVAL(NI) _________

C102 XVAL( I) wXVALf I /XMAX

c POLY0280
C FORMULATIONO NORMAL EQUATIONS POLY0290

DO 3 J-19KTOR- POLYO30-0
D0 3 luleNI

3 SUMXIJ)-SUMX(J)4XVAL(-I)**j______ _____________

D0 4 Isl1.NI_______
4SUMYsSUMY+FLOAT(NFREQI I)) ____________________

AMEANYm SUMY/PTS POLY0350

00 6 JxlqKOR POLY0360
AMEANX(J~w SUMX (J)/PTS POLY0370

6 Q 80 I-1.NI POLY0400

C(I)x SMYX(I) -PTS*AMEANX(I)*AMEANY POLY0410
I DO 8J=19KOR POLY0420__________

IJ u(J-1)*KOR +1 POLY0440
8 AIIJ) wSUMX(K) -PTS* AMEANX(I)*AMEANX4J) - POLY0450

C ______ _________________________ POLY0460

-c-- CROUTIS REDUCTION METHOD _ __________POLY0470

00 11 In29KOR - ~ POLY0400
I1I"(I-1)*KOR + I P0Ly0490 *

1 II)-A(I1I)/ A(l) ______POLYQoo

DOaQ 2 J-2*KOR _PQL~fl5Q f,
KMx J-1 POLYO520
00 _J.QJ14 uJ, OR _ PL03
APla 0.0 POLY0540
D0114 K"1,KM POLYO5 -
I K a(K-1)* KOR+ I -_ __ POLY0560
KJ u(J-1)* KOR+ K POLYO-570

114l API a AP1 + A41KI *A(KJ) __ ___POLY0580

14 "LJ-114 KOR. POLY059
14~ _______ ________-0 POLY0600

jpm Jl PoY061



_ _ _ _ (JP -OL 44 44 45 _ L02

iF =JP-KOR)AL44AL PQLY06.39-ýr 60J.0 0 POLY0640L2

JK IK-1)* KOR +J POLY0660
K! a(-1-, KOR + POLY0670Oý

116 API *API +A(JK) *A(KT) _____POLY0680

-A -(I-lI) KOR + J ____ ____________ POLY0690
JJ =(J-1)* KOR + JPOLY0700

16 A(JI) - (AU!I) -API)/A(JJ) _________POLY0710

445 DUMMY= 0.0 _______ _ POLY0720
12 CONTINUE -P0L-Y0O753O

-- C~l) -C(Ii/A~l) POLY0740
D0 18 1=229KR _____POLYo7So

-- APlm 0.0 PaoLV700
IMu.f -I- POLYOT -

DO 118 KuliM ____ POLY0780
IK a(K-1)* KOR + I POLY0790

118 AP1-AP1 +AIIK) *C(K) POLYOSOO
11 =(1-11* KOR + I D________________ OLY0810

18 C~l) -(C(T)- APi) / AlT!) - - TL-Y0820
KORM- KOR-1 ___PCoLY0830-

IF (KORM) 122o 1239122 POLY0840
122 DO 21 I1-1KORM POLY0850

APlm 0#0 __ __ __ __ __ _ __ __ __ __ _

___ N M=KOR-) POLY0876O
MP= 14+1 ____________________PLO

00 121 K=MPtKOR POLY08______ ~ E~90
M4K =IK-1,* KOR +M ____POLY 2

121 APi zAP1 + A(MK)* C(K) POLY~r91
21 C(M) *CIM) -API POLYO092O -

123 APi. 0.0 POLY0930
DO 24 !1.#KOR _______POLY0940

24 API =AP1 +AMEANX(I) *C(!) POL Y0950
___CO a AMEANY -API POLY0960

-778 SRES z 0.0 ____LY1030___

29 FORMAT 160HI1 COST -FREG SMOOTHED
*RES/4314 INTERVAL FREQ)
DO_77_IsiNI ________________

SMOOTH(II)CO
DO 27 J1.9KOR POLY1090

t 27 SMOOTH(IIPSMOOTH(I)+C(J)*XVALII)**J ______

RESaFLOAT(NFREO( I 1-SMOOTHI I) PL1

-C DENORMALIZATION WITH RESPECT TO XMAX POLY1140
X VAL II)=XVAL CI) *)MAX
XVALU)xXVALII)+XVALl _______________

30 FORMAT( 4F15*4) ___________________ POLY1160
FREQzFLOAT(NFREQITP___________________

77 WRITEIIO2.3OJXVAL(I).FREQSM001'HII).RES ____________

RETURN ___________ ________________

END POLY1280
$ENTRY HSTPLT - __ _ _ _ ______-__________ __ ___

SISSYS __________ ____ ______________________

.SCLOSE S U1 -____ ____________________
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t 
BETA PROGRA39 IJff RG

SJO 6&__. 0 JoH NS 0 W -W MAIN X7131__ ____

.S0PEN S.SUlOoREWINi __________________

AIBJBMCCOST NODECK___ ______ _______

_SISFTC BETATP NODECK
___ DIMENSION OUTPUT(1000) ________ ____

COMMON/NONAME/NTABLE,NtiSET-S, IRANOMfXTABLE( 128) ,FDATAT100)9
*FMODE(lOO)sFRANGE(100),NTYPE(100),ITERNICUMC9,128I

EXTERNAL SFX__ ___________ _____

ITERzlOOO 0_ ____

r N 10100

LNPAGES=2

102=6____________ __

103*10 _ __________________ __

READUO101102)_NSETStIRANDM ____ _________

102 FORMAT (14916)
Do 708 11,oNSETS
READ (1019103) FLOWoFHIGHFMODE(IhtNTYPE(I)

FRANGE( I)-FHIGH-FLOW__________
IF(FRANGE(I).LT*O.)_GOTO_9961-l -' _________ _

709 IF(NTYPEII).GE.1.AND.NTYPE(I).LE.9) Gl TO 707--_

ITER~1_________ _______

707 IF (FI4ODE(I).LE.FHIGH.AND.FMODE(I).GE. FLOW) GO TO 7-08
WRITE (102#104~) I1___________ ________

ITFRI _ _ _ _ __l_ _

708 CONTINUE _________ _______

IF II TER*EQ. 3GOO 96
C 6_ENERAE CUUATIVE 1BET2A§ToA5LES FOR NINE BETA-EQUATIONS

DO 70 M -1*9 - _ _

BB-BBDELTA

998 CALL SAMLE ___________FF

SAMPL RTURSNET AUE OfA O OS OE

C.,.--X ASL ( )B
Bjj xCST MDELTIA NETDHR ___ __________

70_ _ _ _ _ _ _ CONTINUE__

OUH1TPVIIIT)FAA 1)FAA2+DT()+DT()FAA

IFTHE CO ST MO EL IS NERGOTO_9D HERE______ ______

OHIT_*_LT I-IHST+1 _________________________A(4)FDAT(5

WITE (IOHI (OUETPU()R 1IE) GO__TO__9960

99

I'IE40,ý TRN*NAE*ST
WRT 'Al OTU(Kvz*TR



BACKSPACE 10 ____________________

___ CALL EXIT ____________

996L WRITE (1029100)1 ___________

ITERal
GO TO 709

50 FORMAT(1391X915) ___ ____

51_FORMAT(3(E1O.3.1X)_.11) ___ _______ _

101 FORMAT (46H DATA ERROR --- DIf ST-RI'BUTIO T0-Y-PE FO AA EbV.X2
*H1S ZERO OR NOT SPECIFIED) _______

103 FORMAT M3X93E10.2.i1)
100 FORMATMSH DATA ERROR -- LOW GREATER THAN HIGH IN DATA SET N-U-MBER.
* *13)________ __

104 FORM4A-T-(-5CH DATA-ERO M--ODE NOT-B-ETWE-EN- HIGH AND LOW IN DATA SET
** 14) _ _ _ _ _ _ _ _

END__________ _

FUNCTION SFX(X)_______ _____________

____COMMON/NONAME/NTABLE,NS-ET-SIRAN-DM,XiTA-BLE-(128) ,FDATAC 100). -___

*FMODE(100),FRANGE(100),NTYPE(100).ITERNICUM(9,128)

C THIS S-UBROUTINE--USED BY PK-LEd--- -DEFINE-s -BETKA LQ-UA-TTON -PARAMETE-RS

CDIMENSION CONSTB (399)

DATA CONSTB /le #595.1_.1.3591#35,16. 6.5Y.-1~1,7

T *- ;40 9- 01.51-.

SFX=CONSTS (3,NTABLE)*(X4*CONSTB(7INTABLE))4iV(1.0-X)**CONSTB(2F.NT--4
*ABLE))

RETURN __________

SIBFTC SAMPLE -____________

SUB ROUTINE SAMPLE_________________

'c GENERATES A MONTE CARLO VALUE FO-R-EACH INPUT PARAMETERf-

C0z CM MO N / N ONA ME /N TA B L E 9NSE t-s-RAN-W,XjTAWB-LE C12 -8) 9 VD-TATI-o
DATA JK/100043/ ___ _____ _

__DATA THOU/100000./ ____ _____________

j DATA MODTYP/.759.50. .25 ..75, .50, ;.25..75 , .0-6-O. *2-55/ ___________

DO 99 Nm1,NSETS
IF(NTYPE(N).LT.loOR.NTYPE(N).GT.9)GO-0TO 151 __ _____

IwNTYPE(N) ________ ___ ____ _

SMODEuMODTYP( I) _

-- MwNTYPE(N) -__ _ ____

C SINGLE VALUED INPUT__ ____ ______

151 FDATA(N)=FMODE(N)
GO TO 99 _________

10 L-IRANDM -

3 LS?0125*L -___ __ ________

___L=L-(L/JKI*JK____________

TPTL-lIooooo)4s4t3__________
* 4 XL=FLOAT IL) /THOU
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IF(CUM(MsJ)*LT*XL)GO TO 11___________
IF(CUM(MJ)*GT.XL) GO TO 12

GO TO 14.________
11 J - J + 2**L __________

GO TO 13 _____ _ ___________

12 J wJ_-_2**L ____ __ ___ ____ ___

13 CONTINUE - -___

14 SAMPLX - XTABLE(J)
FDATA( N)=FMODE N) +FRANGE (N) *(SAMPLX-SM-DE)-

99 CONTINUE _______ __________

100 RETURN ________ _______________

END__ _ _ _ __

SIBFTCINTEGR_________

SUBROUTINE EVLINT(Ft As B, Y
DIMENSION SUB(IO)o WGT(5) ____________

___ DATA SUB/.130467360E-19.674-6-83170E-1, ___

A .160295216s *2833023039 *425562831o, 986953264,
B .932531683* *8397047849 .71166,97697, .574437169-/
DATA WGT/.333356722E-1, *747256746E-1, _________

A *109543181, .1346333599 *147762112/
____DX=B-A

DO 100 I.1,5
X1=SUB(I )*DX+A
X2=SUB( I+5)*DX+A

100 Yl+WGT(I,*4F(Xl)+F(X2'))
yY*DX
RETURN _______________

END
SENTRY BETATP ___________________

7664325 _________

+1.OOE+04 +1.60E+04 +1.20E+046
* +1. OE+04 +2.80E+04 +2. 0E+043

+lo20E404 +3%OOE+04 +1.80E+043
S~+1.OOE+04 +194JE+04 +1.10E+046

SIBSYS___________
* S~~~IBJOB'COMPLT NODECK_____

SIBFTC HSTPLT NODECK
C EXTRACT OF HISTO__________

F ~~~~~~~~103=10 ___________ ______________

DIMENSION NFREO(100),XVALC100),SMOOTH(i00),OUTPUT(1000)
INTEGER BLANKPXPDOTtAPOS
DATA BLANK*XtDOT*APOS/IH tlHX91H.,1Hl/
READ (103) ITERPNINPAGEStNSETS
IF_(IER_.EQ.l_)_STOP_____ __________

READ(103) (OUTPUT(K)oK..1.ITER)___
--- -TER25xITER/25___________ ___

-C CALCULATES MEAN. STANDARD DEVIATION, AND-PREPARKS HISTOGRAM
IHOPEuO __________

* 445 IHOPE=IHOPE+
-C CALCULATE INTERVAL RANGE fRINT) FOR NI INTERVAL ~ _____

XMN OUTPUT(l)
XMX OUTPUTi1)
DO 9 K a ItITER _______ _ _______

IF40UTPUT(K)*LT.XMIN) XMIN=OUTPUT(K)____________
IFIOUTPUT(K).GT.XMAX) XMAX=OUTPUT(K)____



- 91 CONT.INUE -______-_________

RINT = (XMAX-XMIN)/FLOAT(NI)___________
*C CALCULATE MEAN VALUE (xvAL) FOR EACH INTERVAL
* ~~~~XVAL(1)=XMIN + RINT/2. ____ ____ ________

DO 90 N - 2,N _________ N_ I__ _______

90 9 XVAL(N)=XVALIN-1) + RINT __ _________

CDETERMINE DATA FREQUENCY FOR EACH INTERVAL
I F T HO-P E.-E -.- 2-) G T0 9 3

DO 20 EQN *.N

* ~~~~IF(XLIM.GE*OUTPUT(K)) GTO~ 2 _ ___

21 CONTINUE
N_ NzNI _ _ _ _ _ __ _ _ _ _

92 NFREQ(N)WF-REO(N-)+1 ____ ______

C Z- CA-LCULATE MEAN VALUE (XMEANI _____

93 SUMX = 0.________
DO 30 K = 1*ITER __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

30 SUMX=SUMX+OUTPUT (K)
XMEAN = SUMWXFLOATUM7)________
~ZLCULATE STANDARD DEVIATION (XSDi- __________

-___ SUMSO 0.- ___ __ ____

SDO -40 -K = 1, IT
- 40 SUMSQ&SUMSG+(OUTPUT(K)-XM AN-)-*Tf-_______

IF (ITER*NE.1) GO TO 3210
XSDEV=O ___ ______ ______

GO TO 3200__ _ _ _ _ _ _ _ __ _ _ _ _

3210 XVAR = SUMSQ/(FLOAT(ITER)-l.)_________ ___

XSDEV = SQRT(XVAR) -___

3200 CONTINUE_______ ________ ______

-c PLOTTING ROUTINE - _________

-U_ __ ___

DIMENSION ABELX(15iLABELY(10),LINE(132) _____

C DETERMINES WIDTH OF PLOTTING INTERVAL____

INTW 10=50/Nl _____________

I-lF(IlNT-WID.EO.O) INTWID=1 ____

C DES$IGNS X AXIS SCALE -___ _________

XRANGiE=XMAX-XMIN . ____ ___ _____

IFACTR=O
___ XtNCR-XRANGE/1O.______

IF(XINCReLT*1.) GO TO 498
--400_IF(XINCR.GE.1..AND.XINCR.LE.1,O.) GOTO40________

XINCR=XINCR/ 10. _ __ ____

I FACTR= IFACTR+1 ______________________

410 INCRX=XINCR- ___ _______

~IFITNCRXoEO.33 I NCWX2 -____ __

____ f-(TNCRx.GT.3*ANDa1NCRX.LE.7) INCRX--3 -______ __

--- _ IFT(CRX.EQ. .0oR.INC X-.*F?0.9IINCRX=10 ____ _____

I__ F WI IFAC TR. EQ. 4:T~2 o____

DO 420 In1,IFACTR _________________

INCRXN10*INCRX_______ __ __ ______

420 CONTINUE _______________
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SCALQW=XMt;_________________ _____

425 IF(ABS(SCALOW).GE*O% .AND* ABS(SCALOWI*LE*1O.I GO TO 430
SCALOW=SCALOW/1O.
IFACTR=IFACTR+l _____ _______

GO TO 425
430 LOSCAL-SCALOW ___

IF(IFACTR.EQ.O) GO TO 440 _____

DO 440 I=19IFACTR

~440 CONTINUE _ _ _ __ _ _ _ _ _

431 IF (FLOAT LOSCAL+INCRX) .GE. XMINI GO TO 6743-2 __ _____

LOSCALaLOSCAL+I NCRX___ ______________

GO TO 431 ________ __ ___

432 CONTINUE____ _____

LABELX( 1 )LOSýCAL+INCRX
D0 450 1=2#15 _____

450 LABELX( I =LASELX( I-1)+INCRX _____ _

r L ABELX NOW CONTAINS 15 INCREMENTAL VALUES TO BE USED
C -- FOR SCALE MARKINGS ALONG THE X AXIS -_

C
C DESIGN Y AXISSCL______

INCRY=MAXV'/10' _____ _____________ _

LABELY(1 )=INCRY________
DO 460 !z2v1O

460 LABELY(l)-LABELYII-1)+INCRY__________

C LABELY NOW CONTAINS 10 INCREMENTAL VALUES TO BE USED
-C FOR SCALE MARKINGS ALONG THE Y AXIS _______ _____

C

C PRINT Y SCALE _________

C
WRITE (102,4ý02-)(LABE-LY(IhI=1,lo)-
DO 469 1=16*116910

-4694 LI NE_(I )DOT_____ __

DO 481 1=1,15
481 LINE(I)=BLANK ________

- O482 1017911592 _____-

482 LINEi BANK
DO 483 ISTART-18v108s1O _____ ___ ______

I T6- ISTAkRT+6 ____ __________

DO 483 IzISTART91S TOP92
__40 3L!NE ( I )?ýPOS ~ __ .-- ~ -- - - -- - - -- _ _ _ _ _ _

~IRITEITE.402t43(LINE(4T~iJ4 ___ ___ _____
ARITE(102*4Q4)XMIN 

__ __ ______

L C .BEGIN PLOTTING DATA POINTS AND LABEL.IN-G-XAXIS ____

C
DX a XRANGE/ (FLOAT4IMTWID).*FLOAT(NI~) ____

DY a FLOAT(MAXY)/100. ________

___ DO 499 K*1,NI_____ ____ _____

DO 499 ,.i1.INTWID
YVALU.O. ____ _________

477 IF (FLOAT(NFREQTK))*LE*YVALU) GO TO 475* ______
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LINE (I) 'BLANK _________

YVALU=YVALU+DY
GO TO 477 ________ _____ ___________

4 5 LINE(T)ýX_________ ____ _____________ ____

___XVAL.U=XVALU+DX___________________

-C PRINT X VALUE IF APPULC-A-B-EE- ___ __________ ___

IF(FLOATCLABELXLAUI) GT1. XVALU) GO TO 470 _______

-- -P-R-INT -XMEAN- IF- IT ~ T ~ N TI INTERVA-L _ _ __ _ __ _ __ _ __ _ _

C U S_ _ _ _ _ _ _

IF(XMEAN*LTvXVALU sOR* XMEAN.GE.(XVALU+DX)) GO TO -471
GO TO 472

470 IF (XMEAN.LT*XVALU *OR%. XMEAN.GE.(XVALLJ+DX))_G5 TO 473 ________

GO TO 474___________ ____

471 WRITE(1O2,405)LA8ELX(LAB),(LINECIT) ,II'1.lI ________

LAB' LAB+ 1___________ _____

GO TO 499 t__________ ________________

472 WRITE( 102,406)LABELX(LABJ .XMEANd(LINE( II .II'12,II
__ LAB=LAB+1 _____ ______ ______

GO TO 499 _ _ ___ ____ _ _

473 WRITE (102,407) (LINE(IIhI!l=1,I_______________
GO TO 499 -_______

474 WRITE(102,408)XMEANiLINE(II),i1=129I) ___________

WRITE(!029411)XMAX _______________

GO TO 99 _______

402 FORATE(1Hl.2X.H 000(6,1)

407 NFORMAT I 1SXOOA1~) +___ .500_____________

408 FORMAT(9X,7HXMEA

409 FORMAT f79HOERROR MESSAGE -- RANGE OF TOTAL COST ESTIMATES IS LES
___*$ THAN TCN. PLOs DELETED
411 FORMAT(6HXMAX_',F10.3)____ _____

SIBFTC FTKURV___________
- SUBROUTINE POLYFTEXVAL,NFRE-,-NI-,kORtSMOOTH)

10125____ __ _____

C ______POLY0010

7 C DIMENSION FOR ARGUMETS ________ PO-L-Y-OOyo

-C DIMENSION XVAL(100),NFREQ(1OO).A(62ý51OC(25-),S!MOObT-H(1006)-PL04

C DIMENSION FOR SELF-GENERAIt -V-AULUEýS- POLYOOSO

DI~MENS10N -SUM-XT10)gSMYXI 5019_AMEA-N-X-(50T-
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KTORm2'KQR______- ___ ___ ___ POLY009O.
c __________POLY0100

C INITIALIZATION -- POLY011O
DO 1 Im1,KOR ____ _____POLY0120

SMYXII)u 0.0 __ _ POLY0130
1 AMEANX(I)a 0.0 -~-POLY0140

___DO 2 ImiKTOR ____POLY00

2 SUMX(I)m 0.0___ POLY0160
SUMYX 0.0 POLY0170

C ________________ ___________POLYO18O

C NORMALIZATION WITH RESPECT TO XMAX POLY0190
XVALI=XVAL(l) _ _______

-DO 707NOJ a1,N s___ N_ I_____ __

707 XVAL (NOJ )uXVAL (NOJ I-XVAL 1___________
XMAX=XVAL (NI)
DO 102 I-i*NI ____________ _______ ________

102 XVAL (I 1 XVAL(IT/XMAX
C _ __ ___ ___ ___ _ _ _ _ ___ ___ POLYOZ27O

________ _____ _______ _POLYO28O0

FOrdRMU LAfTINON OF NOR-MAL EQUATIONS -__ POLY0290

SUt4X(J)=SUMX(J)+XVAL(1'3**i _

-~ DO 4. 1=1NI _ _ _ _ _ _ _ _ _

4 SUMY-SUMY+FlOATINFREQ(l)_____ _________

AMEANYm SUMY/PTS __POLY035O

DO 6 J-1*KOR POLY0360
__AMEANX(J)m SUMX (JU/PTS POLY0370

D-06 !I.L =I_ AT______

6 SMYX(J)*SMYX(JI+FLOATINFREOI IJV*XVAL41)**J______________
D60 8 11,KOR POLY0400

___CIII. SMYXII) -PTS*AMEANXTI)*AMEANY ___ __POLY0410

DO 8 JalvKOR POLY0420
Ka I+J ________________________POLY0430

IJ o(J-I)4IKOR +1 POLY0440
8 MAIJ =SUMX(K) -PTS* AMEANXII)*AMEANXIJ) POLY0450

C _________ _______ ______ ___________POLY0460

Sc COUTIS REDUCTION METHOD __POLY0470

DO 11 lm2vKOR POLY0480
I1I-(1-1)*KOR + I POLY0490___ ____ ______

11 A(I11) = A(111)/ AM1 _ ______ -____ POLY0500
DO 12 J-2oKOR ______POLY0510

KM. J-1POLY0520

APla 0.0 POLY054Q.
______QO_Ký __ ___ POLY0550

1K *(K-1)*_KOR+ I _____POLY0560

KJ x(J-1)* KOR+ K _____ POLY0570
1J14 API AP1 + WIK) *A(KJ) _ POLY0580

IJ u(J-1)* KOR+ I _________POLY0590

fj) - AlL)) -AP1 POLY0600
__________________ _ _____________ POLYO6 10

IF (JP- KOR) 444P 4449 445 _________ POLY0620
4t44 DO 16 I-JP KOR POLY0630.

API= 0.0 PgLX0649~
D0116 KwlKM POLYA65Q;

r JK a(K-11* KOR + J POLYO6O-Q
I KI =(I-I)* KOR + K ____ _________POLY0670:.

1j16 API sAPI +A(JKI *A(KI) __ POLY0680
J I .11*KR + J. __________ POLY0690
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JJ -(J-1T* KOR + J____ _____ POLY0700
16 A(JI) - WAJI) -API)/A(JJ) POLY0710

44 IMYa 0.0 POLY0720
12CONTINUE __________ ______POLYO-f73

C1V) zC1/A (1) -__-POLY0746

DO 18 I-29KOR ____ _ ___ ___ POLY0750
AVla 0.0 ___POLY0760

___ _________ POLY0770

DO 11 agMPOLY0780
1K a(K-13* KOR + I ______ __________ PZJLY0790

S AP~A~l+AIK) *(K O-LYO800
11 uI-11* KOR + I _ __ ____POLYO81O

18-C(I) = fl Ai / TT ___ __ __POLYO8ZO-

KORM KOR1 __ _ ___POLY0830

If MORMI 122., 1273,;12-2-- -- POLY0840
122 DO 1 aioKOR_________ POLYOS S0

APlis 0.0 _______ __ POLYOI60.
M~ KOR-IPOLY0870

MP= M+1 ____________ ________ - -POLY 0 a

- ~121 K-MPvKUF;R -- ______ ________p-o-L-Y0890

_ _ _ _ _---*-- ON CTL - _ _ _ _ _ _ _ _ _ _ _ _

24API -API + A(ME X)* *C() ____________________

778 RES a 00 _____ ___________________POLY0930

DO 77 =1,I K-R PL04

CO 27A -EN -APi!--OR POLYt 0960

-C _ _ _ ____ _ _ _POLY113O,

C7 DRENOMLZTO WIT REPET XA POLY1036

___ F0REMFLAT (NICOTFREQIf SMOOTHED_______________

77 WRTES/4230)XAINTERVAL MOH(),E _____________

REUR POLY1130
__ DENORM ____ _______ ______________ _____ POLY1140

SENTRY HSTPLT _____ ____________

XVA.L0$ I =XVAL$A 1 __ ______-__________

30 FOMAT(4FIS.) POY116

FRQFOT1FE~)
--I!WIE123)VL(~ FE9MOHIoE
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